Teoria da Decisão
Atenção: há um trabalho a ser feito. Vide final desta postagem.
A teoria da decisão é uma área interdisciplinar de estudo, com definições que relacionam filosofia, matemática e estatística, aplicável a quase todos os ramos da ciência, engenharia e principalmente a psicologia do consumidor (baseados em perspectivas cognitivo-conductuais). Relaciona-se à forma e ao estudo do comportamento e fenômenos psíquicos daqueles que tomam as decisões (reais ou fictícios), a identificação de valores, incertezas e outras questões relevantes em uma dada decisão, sua racionalidade, as condições pelas quais após um processo será levado a ter como resultado a decisão ótima. É um campo relacionado muito intimamente com a teoria dos jogos, que veremos a seguir. -- Fonte: Wikipédia
Teoria dos Jogos
Teoria dos jogos é um ramo da matemática aplicada que estuda situações estratégicas onde jogadores escolhem diferentes ações na tentativa de melhorar seu retorno. Inicialmente desenvolvida como ferramenta para compreender comportamento econômico e depois usada pela Corporação RAND para definir estratégias nucleares, a teoria dos jogos é hoje usada em diversos campos acadêmicos. A partir de 1970 a teoria dos jogos passou a ser aplicada ao estudo do comportamento animal, incluindo evolução das espécies por seleção natural. Devido a interesse em jogos como o dilema do prisioneiro iterado, no qual interesses próprios e racionais prejudicam a todos, a teoria dos jogos vem sendo aplicada nas ciências políticas, ciências militares, ética, economia, filosofia, recentemente, no jornalismo, área que apresenta inúmeros e diversos jogos, tanto competitivos como cooperativos. Finalmente, a teoria dos jogos despertou a atenção da ciência da computação que a vem utilizando em avanços na inteligência artificial e cibernética.
A teoria dos jogos tornou-se um ramo proeminente da matemática nos anos 30 do século XX, especialmente depois da publicação em 1944 de The Theory of Games and Economic Behavior deJohn von Neumann e Oskar Morgenstern. A teoria dos jogos distingue-se na economia na medida em que procura encontrar estratégias racionais em situações em que o resultado depende não só da estratégia própria de um agente e das condições de mercado, mas também das estratégias escolhidas por outros agentes que possivelmente têm estratégias diferentes ou objectivos comuns.
Os resultados da teoria dos jogos tanto podem ser aplicados a simples jogos de entretenimento como a aspectos significativos da vida em sociedade. Um exemplo deste último tipo de aplicações é o Dilema do prisioneiro (esse jogo teve sua primeira análise no ano de 1953) popularizado pelo matemático Albert W. Tucker, e que tem muitas implicações no estudo da cooperação entre indivíduos. Os biólogos utilizam a teoria dos jogos para compreender e prever o desfecho da evolução de certas espécies. Esta aplicação da teoria dos jogos à teoria da evolução produziu conceitos tão importantes como o conceito de Estratégia Evolucionariamente Estável, introduzida pelo biólogo John Maynard Smith no seu ensaio Game Theory and the Evolution of Fighting.
Na economia, a teoria dos jogos tem sido usada, segundo Joseph Lampel, para examinar a concorrência e a cooperação dentro de pequenos grupos de empresas. A partir daí, era apenas um pequeno passo até a estratégia. Pesquisadores de administração de estratégia têm procurado tirar proveito da teoria dos jogos, pois ela provê critérios valiosos quando lida com situações que permitem perguntas simples, não fornecendo respostas positivas ou negativas, mas ajuda a examinar de forma sistemática várias permutações e combinações de condições que podem alterar a situação. As questões estratégicas da vida real dão origem a um número imenso de variações, impossibilitando o tratamento exaustivo de todas as possibilidades. Assim o objetivo não é resolver as questões estratégicas, mas sim ajudar a ordenar o pensamento estratégico - provendo um conjunto de conceitos para a compreensão das manobras dinâmicas contra os concorrentes.
Em complemento ao interesse acadêmico, a teoria dos jogos vem recebendo atenção da cultura popular. Um pesquisador da Teoria dos Jogos e ganhador do Prémio de Ciências Econômicas em Memória de Alfred Nobel, John Nash, foi sujeito, em 1998, de biografia por Sylvia Nasar e de um filme em 2001 Uma mente brilhante. A teoria dos Jogos também foi tema em 1983 do filme Jogos de Guerra.
Embora similar à teoria da decisão (vide Matemática Computacional - Aula 16/11/2012, neste blog), a teoria dos jogos estuda decisões que são tomadas em um ambiente onde vários jogadores interagem. Em outras palavras, a teoria dos jogos estuda as escolhas de comportamentos ótimos quando o custo e beneficio de cada opção não é fixo, mas depende, sobretudo, da escolha dos outros indivíduos.
Jogos infinitamente longos
Por razões óbvias, jogos como estudados por economista e jogadores no mundo real geralmente terminam em um número finito de movimentos. Matemáticos puros não estão restritos a isto, e na teoria de conjuntos em particular estudam jogos que se prolongam por um número infinito de movimentos, com os vencedores (ou prêmios) não são conhecidos até após todos estes movimentos tenham sido completados.
O foco da atenção é usualmente não tanto qual o melhor caminho para o jogador em tal jogo, mas simplesmente se um ou outro jogador tem uma estratégia vencedora. (Isto pode ser provado, usando o axioma da escolha, que há jogos— mesmo com informação perfeita, e onde as únicas saídas são vencedor ou perdedor— para o qual nenhum jogador tem uma estratégia vencedora.) A existências de tais estratégias, para jogos projetados especificamente para este fim, tem conseqüências importantes na teoria descritiva dos conjuntos.
Ciência da computação e lógica
A teoria dos Jogos veio a impulsionar importantes leis na lógica e na ciência da computação. Várias teorias lógicas têm uma base na semântica dos jogos. Além disso, os cientistas da computação têm usado os jogos para modelar computação interativa.
Em ciência da computação, computação interativa é um modelo matemático para o cálculo que envolve comunicação com o mundo externo. Isto é em contraste ao entendimento tradicional de cálculo que assume uma simples interface entre o agente de computação e o ambiente, consistindo em fazer uma pergunta (entrada) e gerar uma resposta (saída).
A famosa tese de Church-Turing tenta definir computação e computabilidade em termos de Máquinas de Turing[1]. No entanto, a máquina de Turing fornece apenas uma resposta para a questão do que significa computabilidade de funções e, com tarefas interativas que nem sempre são redutíveis a funções, ela falha em captar nossa intuição mais ampla de computação e computabilidade. Embora este fato tenha sido admitido pelo próprio Alan Turing, foi só recentemente que a comunidade científica da Computação Teórica percebeu a necessidade de definir modelos matemáticos adequados de computação interativa. Entre os modelos matemáticos de computação estudados atualmente que tentam capturar a interação são as máquinas fácil-e-difícil de Japaridze, elaboradas nas estruturas de lógica computacional, as máquinas de Turing persistentes de Goldin[2][3][4], e as máquinas de estado abstrato de Gurevich. Peter Wegner[5]tem, adicionalmente, feito um grande trabalho nesta área da ciência da computação.
Trabalho
Como sugestão de trabalho, desenvolva um programa usando o algoritmo minmax para mostrar todas as alternativas, destacando a melhor escolha, para o jogo da velha.
Nenhum comentário:
Postar um comentário
Observação: somente um membro deste blog pode postar um comentário.